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1,3-Dipolar cycloadditions are powerful methods for constructing
a variety of five-membered heterocycles in a convergent manner
from relatively simple precursors.1,2 Recently, several examples of
Cu(I)-catalyzed 1,3-dipolar cycloadditions to terminal alkyness
presumably proceeding via a copper acetylideshave been described
(Figure 1).3,4 In addition to achieving heterocycle formation under
milder conditions, copper-catalyzed processes can overcome the
poor regioselectivity observed in some of the corresponding thermal
cycloadditions (e.g., eq 1),3 as well as provide interesting new
opportunities for asymmetric catalysis.4b,5

To date, such copper-catalyzed cycloadditions have been reported
for just two families of dipoles, azides and nitrones, furnishing 1,2,3-
triazoles3 and â-lactams,4 respectively (Figure 1). In this Com-
munication, we considerably expand the scope of this useful mode
of reactivity, demonstrating that 1,3-dipolar cycloadditions of
azomethine imines to alkynes can be catalyzed by Cu(I); at the
same time, we achieve effective asymmetric catalysis of this new
process (eq 2).

In 1968, Dorn and Otto established that 3-oxopyrazolidin-1-ium-
2-ides such as1, which are derived from the reaction of pyrazolidin-
3-one with an aldehyde, are stable, easily handled compounds.6

Cycloadditions of these dipoles even with highly electron-deficient
alkynes (e.g., dimethyl acetylenedicarboxylate) are often conducted
at elevated temperatures and, in the case of unsymmetrical alkynes,
generally furnish mixtures of regioisomeric heterocycles.6,7 The
products of such cycloadditions have a variety of applications,
including as antibacterial agents (e.g., LY186826).8,9

In an initial investigation, we examined the reaction of azo-
methine imine2 with ethyl propiolate (3) (Table 1). At room
temperature in the absence of a copper catalyst, essentially none
of the target heterocycle (4) is generated (entry 1). In contrast, in
the presence of 5% CuI, the desired 1,3-dipolar cycloaddition
proceeds cleanly, affording the product as a single regioisomer (88%
yield; entry 2).

Having established the viability of copper-catalyzed [3+ 2]
cycloadditions of azomethine imines to alkynes, we turned our

attention to asymmetric catalysis. Unfortunately, the addition of
(S)-BINAP shuts down the reaction (<2% yield; entry 3). Although
bidentate phosphines appear to generally inhibit catalysis by
copper,10 bidentate nitrogen-based ligands do not. Thus, cycload-
dition proceeds smoothly in the presence of bisoxazoline5, although
the desired heterocycle (4) is produced with very modest enantio-
selectivity (19% ee; entry 4).11,12 Fortunately, copper catalysis is
also effective in the presence of a P,N ligand, phosphaferrocene-
oxazoline6a,13 leading to cycloaddition in excellent yield and with
high stereoselection (98% yield, 90% ee; entry 5). Increasing the
steric demand of the substituent on the oxazoline (i-Pr f t-Bu)
results in a decrease in ee (90% eef 58% ee; entry 5 vs entry 6),
as does a change in the planar chirality of the phosphaferrocene
subunit (90% eef 80% ee; entry 5 vs entry 7). Thus, the
investigation outlined in Table 1 describes two critical discover-

Figure 1. Examples of copper-catalyzed [3+ 2] cycloadditions.

Table 1. 1,3-Dipolar Cycloaddition of an Azomethine Imine to an
Alkyne: Effect of Copper and Ligands on Yield and
Enantioselectivitya

entry catalyst yield (%)b ee (%)

1 none <2
2 5% CuI 88
3 5% CuI/5.5% (S)-BINAP <2
4 5% CuI/5.5%5 98 19
5 5% CuI/5.5%6a 98 90
6 5% CuI/5.5%6b 100 58
7 5% CuI/5.5%7 100 80

a All data are the average of two runs.b Isolated yield.
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ies: Cu(I) can efficiently catalyze regioselective14 1,3-dipolar
cycloadditions of azomethine imines to alkynes, and, in the presence
of an appropriate chiral ligand, a highly enantioselective reaction
can be achieved.

We have determined that the scope of the Cu(I)/phosphafer-
rocene-oxazoline-catalyzed asymmetric cycloaddition is fairly
broad. With respect to the imine portion of the dipole, the process
tolerates aromatic (Table 2, entries 1-4), alkenyl (entry 5), and
alkyl (entries 6 and 7) groups on carbon, furnishing the products
in excellent yields and with very good enantioselectivities.15 With
respect to variations in the pyrazolidinone ring of the dipole, the
cycloaddition proceeds cleanly and with high ee for a range of
substitution patterns (eq 3).

With regard to the alkyne, the best yields and enantioselectivities
are obtained when this coupling partner is electron-poor (Table 3).
Thus, if the alkyne bears a carbonyl (entries 1-3), an electron-
deficient aromatic (entries 4 and 5), or a heteroaromatic group (entry
6), the ee of the cycloaddition is high. Simple aryl- or alkyl-
substituted alkynes are also suitable substrates for Cu(I)/phospha-
ferrocene-oxazoline-catalyzed asymmetric cycloaddition, although
gentle heating is necessary for a reasonable reaction rate, and an
erosion in regioselectivity is observed (∼6:1; entries 7 and 8).16

To the best of our knowledge, these are, however, the first examples
of an unactivated alkyne undergoing cycloaddition with this family
of dipoles.

In summary, we have developed a new copper-catalyzed 1,3-
dipolar cycloaddition of terminal alkynes, presumably relying upon
the transient formation of a copper acetylide to enhance the
reactivity of the dipolarophile. By employing a phosphaferrocene-
oxazoline as a chiral bidentate ligand, we have efficiently coupled
a wide range of azomethine imines and alkynes to generate useful
heterocycles in very good enantiomeric excess. Future studies will
explore further expansion of the scope of copper-catalyzed cy-
cloaddition reactions.
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Table 2. Reaction Scope: The Azomethine Imine Componenta

entry R yield (%)b ee (%)

1 Ph 98 90
2 o-FC6H4 99 81
3 m-BrC6H4 99 86
4 p-CF3C6H4 99 95
5 1-cyclohexenyl 98 94
6 n-pentyl 92 82
7 Cy 94 96

a All data are the average of two runs.b Isolated yield.

Table 3. Reaction Scope: The Alkyne Componenta

entry R yield (%)b ee (%)

1 CO2Et 98 90
2 COMe 98 90
3 CONMePh 100 94
4 p-EtO2CC6H4 77 88
5 p-CF3C6H4 90 86
6 2-pyridyl 100 84
7c,d Ph 73 88
8c,e n-pentyl 63 74

a All data are the average of two runs.b Isolated yield.c The reaction
was conducted at 45°C. The yield and the ee are those of the major
regioisomer.d Regioselectivity: 5.6/1.e Regioselectivity: 6.6/1.
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